2018 AoM PDW "Natural Experiments in Management Research: A Hands-on Introduction"

An Illustration of the Regression Discontinuity Design

Caroline Flammer

Boston University

August 10, 2018

The Identification Challenge

- Does X cause Y?
- Tempting to regress Y on X ...

$$Y = a + b \times X + controls + e$$

Unobservables?

- ... but often X is endogenous with respect to Y
- Endogeneity is especially challenging in strategy research:
 - > By definition, firm strategies are endogenous decisions of companies.

How to Establish Causality?

- Ideally: need randomization of X.
- But: randomization is hard to get (except in controlled lab/field experiments).
- Second best: use quasi-natural experiments, i.e., look for an empirical setting in which X varies exogenously.
- Importantly: to establish causality, you need a source of exogenous variation in X.

Three Methods of Causal Inference

- Leaving aside controlled experiments, three main methods of causal inference:
 - 1) IV (instrumental variables)
 - 2) DID (difference-in-differences)
 - 3) RDD (regression discontinuity design)
- 1) and 2) increasingly popular in strategy research.
- 3) is rarely used.
 - Missed opportunity.
 - ➤ RDD considered as the sharpest tool of causal inference since it is closest to ideal setting of randomized experiments (see, e.g., Lee and Lemieux, 2010).
- This presentation: focus on 3) from applied perspective.

Regression Discontinuity Design (RDD)

Example:

Flammer and Bansal, "Does a Long-Term Orientation Create Value: Evidence from a Regression Discontinuity" (Strategic Management Journal, 2017)

Agenda

- 1. Discontinuity
- 2. Randomization Tests
- 3. Estimation
- 4. External Validity
- Recap—RDD "Etiquette"

Context

- Do companies benefit from a longer-term orientation?
- "Naïve" OLS Regression:

Performance =
$$\alpha + \beta \times$$
 Long-term orientation + γ'X + ε

Omitted Variables?

- ➤ Alternative story #1: "Deep pocket" story: Companies that perform better need to worry less about the short run and hence can more easily afford to be long-term oriented.
- ➤ Alternative story #2: More talented CEOs may take a longer time perspective and, at the same time, show better financial results given their managerial ability.
- **>** ...

Ideal Experiment

Long-term orientation (random)

- Shareholder value
- Operating performance

Short-term orientation (random)

- Shareholder value
- Operating performance

RDD Approach

- Shareholder proposals on long-term executive compensation.
 - ➤ Objective of long-term compensation: incentivize executives to create long-term value, thus fostering long-term orientation (e.g., Kole, 1997).
- (Quasi-)random assignment of long-term incentives to companies:
 - Long-term executive compensation shareholder proposals that pass or fail by small margin of votes.
 - Intuition: no systematic difference between company that passes proposal with, e.g., 50.1% of votes and company that rejects proposal with 49.9% of votes.
 - Minor difference in vote shares leads to discrete change (i.e., a discontinuity) in adoption of long-term compensation policies.
 - Regression Discontinuity Design (RDD).
 - Passage of such "close-call" proposals akin to random assignment of long-term incentives to companies → provides clean causal estimate.

Shareholder Proposals on LT Executive Compensation

Source:

RiskMetrics and SharkRepellent databases.

Coverage:

- U.S. publicly-traded companies from 1997–2012.
- Information included:
 - Firm identifiers, proposal description, date of shareholder meeting, proposal's sponsor, voting requirement, outcome of votes.

Selection Criteria:

- Shareholder-sponsored proposals.
- Related to long-term executive compensation:
 - Restricted stocks (i.e., company shares that cannot be sold in short run);
 - Stock options with long-term vesting period;
 - Long-term incentive plans (LTIP).

Shareholder Proposals on LT Executive Compensation

Example of LT Compensation Proposal that was Closely Approved

Company: Lucent Technologies, Inc.

Meeting Date: February 16, 2005

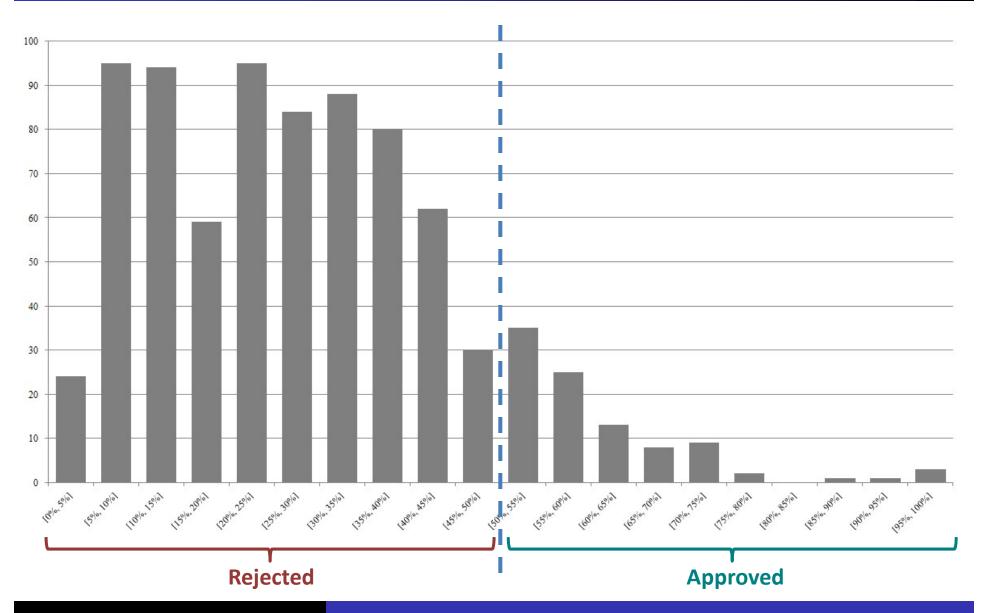
Proposal Type: Restricted stocks

Support Statement: As long-term shareholders, we support compensation policies for

senior executives that provide challenging performance objectives

that motivate executives to achieve long-term shareholder value.

Voting result: Passed (50.1% Yes versus 49.9% No)

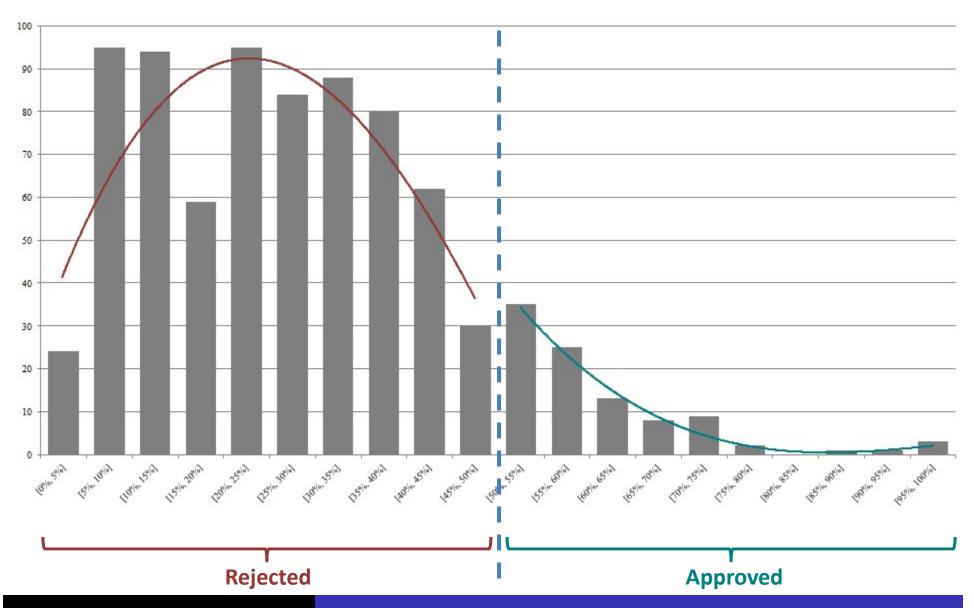

Source: SharkRepellent

Final Sample

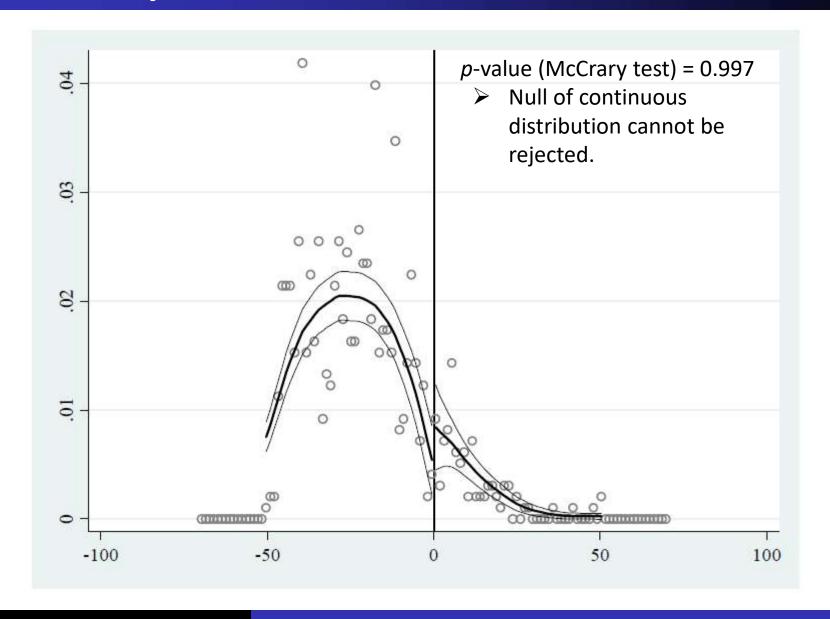
- Final Sample:
 - 808 long-term executive compensation proposals.
 - 65 proposals within 5% of majority threshold.
 - 152 proposals within 10% of majority threshold.

"close call"

Distribution of Vote Outcomes


Agenda

- 1. Discontinuity
- 2. Randomization Tests
- 3. Estimation
- 4. External Validity
- Recap—RDD "Etiquette"


Randomization Tests

- Regression discontinuity design (RDD):
 - Compare shareholder proposals that pass or fail by small margin of votes.
- Identifying assumption of the RDD:
 - Around majority threshold, outcome of vote is as good as random.
- Two standard tests of this assumption (akin to tests of randomization in randomized experiments):
 - 1) Distribution of votes is continuous around majority threshold.
 - 2) No pre-existing differences between companies that marginally pass and reject long-term compensation proposals.

Continuity around Majority Threshold

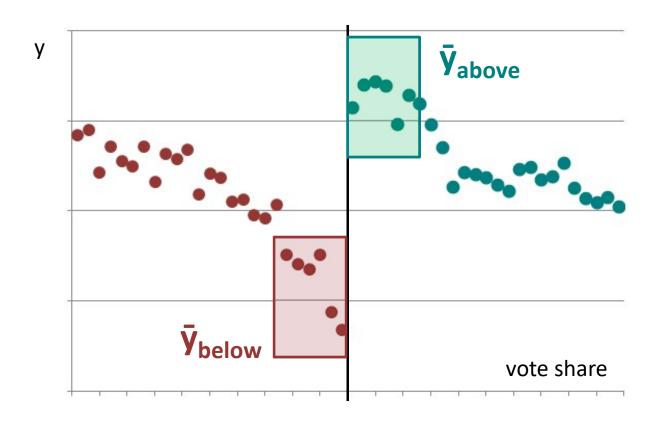
McCrary Test

No Pre-Existing Differences around Majority Threshold

	Before meeting $(t-1)$			Change from $(t-2)$ to $(t-1)$				
	(1)		(2)		(3)		(4)	
Abnormal return	0.000		0.003		-0.001		0.003	
	(0.002)		(0.005)		(0.003)		(0.007)	
Market value	-0.533***		-0.207		-0.043		0.044	
	(0.183)		(0.356)		(0.055)		(0.107)	
Total assets	-0.491**		0.087		-0.026		0.012	
	(0.192)		(0.374)		(0.024)		(0.046)	
Total CEO compensation	0.220		0.254		0.128		0.529	
	(0.192)		(0.374)		(0.181)		(0.352)	
Long-term CEO compensation	0.282		0.459		0.195		0.249	
	(0.850)		(1.623)		(0.761)		(1.474)	
LT-index	-0.016		0.047		-0.000		0.010	
	(0.016)		(0.031)		(0.011)		(0.022)	
Capital expenditures	-0.004		0.004		-0.001		-0.001	
	(0.005)		(0.008)		(0.002)		(0.004)	
R&D expenditures	0.005		-0.001		-0.003		-0.001	
	(0.007)		(0.014)		(0.002)		(0.005)	
ROA	-0.007		-0.001		-0.000		-0.006	
	(0.010)		(0.018)		(0.006)		(0.011)	

No Pre-Existing Differences around Majority Threshold

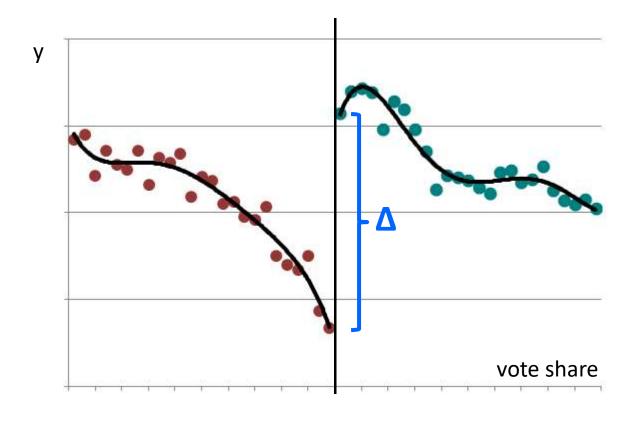
	Before meeting $(t-1)$		Change from $(t-2)$ to $(t-1)$		
	(1)	(2)	(3)	(4)	
NPM	-0.002	0.002	-0.005	-0.001	
	(0.021)	(0.040)	(0.016)	(0.032)	
Sales growth	0.007	-0.00 4	0.022	0.028	
(Ta)	(0.022)	(0.043)	(0.030)	(0.058)	
Tobin's Q	-0.199*	-0.176	-0.002	0.088	
	(0.107)	(0.213)	(0.051)	(0.102)	
Leverage	-0.008	0.007	-0.004	-0.001	
	(0.018)	(0.034)	(0.006)	(0.012)	
KZ-index	0.022	0.211	-0.057	-0.053	
	(0.087)	(0.174)	(0.039)	(0.079)	
KLD-index	-0.949**	0.122	0.010	-0.172	
	(0.428)	(0.843)	(0.180)	(0.357)	
G-index	0.675**	0.661	-0.025	-0.019	
	(0.262)	(0.507)	(0.056)	(0.109)	


Firms that marginally rejected proposals are **very similar** to firms that marginally accepted proposals, which **supports** the **randomization assumption**.

Agenda

- 1. Discontinuity
- 2. Randomization Tests
- 3. Estimation
- 4. External Validity
- 5. Recap—RDD "Etiquette"

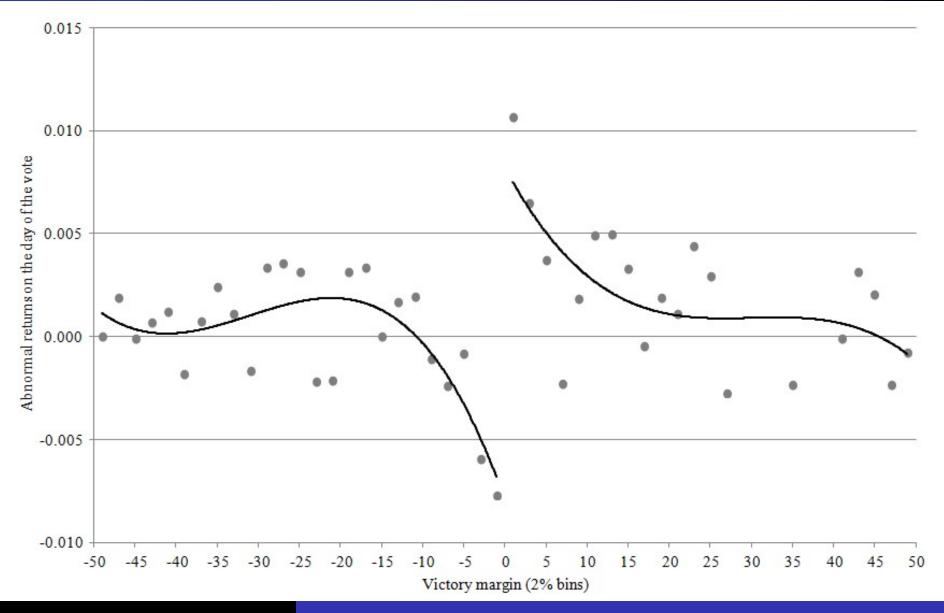
Regression Discontinuity Design (RDD)


Objective: measure difference in outcome variable y around threshold.

$$\Delta = \bar{y}_{above} - \bar{y}_{below}$$

Regression Discontinuity Design (RDD)

Objective: measure difference in outcome variable y around threshold.



Regression Discontinuity Design

$$y_{it} = \beta \times \text{Pass}_{it} + P_l(v_{it}, \gamma_l) + P_r(v_{it}, \gamma_r) + \varepsilon_{it}$$

- y_{it} : dependent variable for firm *i* around proposal vote at time *t*.
 - Abnormal return (AR) computed using the 4-factor model (i.e., stock return adjusted for market, size, book-to-market, and momentum).
- $Pass_{it}$: dummy variable that equals
 - > 1 for firms that pass proposal
 - O for firms that reject proposal.
- $P_l(v_{it}, \gamma_l)$: polynomial in vote share on LHS of majority threshold. $P_r(v_{it}, \gamma_r)$: polynomial in vote share on RHS of majority threshold.
- ε_{it} : error term (standard errors clustered at firm level).

Abnormal Returns on Day of Vote

Effect of LT Incentives on Firm Performance

	Full model	[-10%, +10%]	[-5%, +5%]	[-2.5%, +2.5%]
Pass	0.0114***	0.0068*	0.0142**	0.0228*
	(0.0039)	(0.0041)	(0.0066)	(0.0134)
Polynomial in vote share	Yes	No	No	No
R-squared	0.013	0.019	0.064	0.055
Observations	808	152	65	19

Agenda

- Discontinuity
- 2. Randomization Tests
- 3. Estimation
- 4. External Validity
- Recap—RDD "Etiquette"

External Validity

- Benefit of RDD: internal validity.
 - Variation in long-term incentives is quasi-random.
 - RDD methodology often seen as the "sharpest tool of causal inference since it approximates very closely the ideal setting of randomized controlled experiments" (Lee and Lemieux, 2010).
- Potential concern of RDD: external validity.
 - Identification is obtained from firms close to discontinuity.
 - Are those firms representative of firms far from discontinuity?
- Assessment of external validity:
 - Contrast firms close to discontinuity with firms far from discontinuity.

External Validity

-5%, +5%] versus other proposals	[-10%, +10%] versus other proposals
----------------------------------	-------------------------------------

	Mean [-5%, +5%]	Mean other proposals	p -value	Mean Mean [-10%, +10%] other proposals	p -value
Abnormal return on meeting day	0.001	0.001	0.900	0.000 0.001	0.325
Market value (\$ billion)	41.088	37.595	0.715	37.157 38.043	0.872
Total assets (\$ billion)	115.722	108.582	0.808	112.359 108.414	0.814
Total CEO compensation (\$ million)	13.139	13.223	0.962	13.995 13.034	0.513
Long-term CEO compensation (\$ million)	5.851	4.197	0.227	5.178 4.127	0.175
LT-index	0.732	0.751	0.262	0.731 0.753	0.088*
Capital expenditures	0.045	0.046	0.906	0.043 0.046	0.371
R&D expenditures	0.050	0.038	0.208	0.045 0.038	0.306
ROA	0.095	0.114	0.064*	0.108 0.114	0.363
NPM	0.181	0.190	0.660	0.192 0.189	0.840
Sales growth	0.078	0.070	0.734	0.097 0.064	0.070*
Tobin's Q	1.503	1.680	0.146	1.611 1.679	0.409
Leverage	0.279	0.289	0.611	0.267 0.293	0.076*
KZ-index	0.153	0.165	0.901	0.195 0.157	0.510

Companies at the threshold are likely **representative** of other companies in our sample.

Agenda

- 1. Discontinuity
- 2. Randomization Tests
- 3. Estimation
- 4. External Validity
- 5. Recap—RDD "Etiquette"

Recap—RDD "Etiquette"

- Steps to implement the RDD:
 - Starting point: a "discontinuity":
 - E.g., majority threshold for election/vote, merit threshold for award, etc.
 - Importantly, being marginally above or below the discontinuity should be "as good as random".
 - Randomization tests:
 - McCrary test.
 - Covariate balance.
 - Estimation:
 - Non-parametric: compare means right above vs. right below discontinuity.
 - Parametric: polynomials.
 - External validity:
 - Contrast firms close to discontinuity vs. firms far from discontinuity.

Literature

Econometrics of RDD:

- Imbens GW, Lemieux T. 2008. Regression discontinuity designs: A guide to practice. *Journal of Econometrics* 142(2): 615–635.
- Lee DS, Lemieux T. 2010. Regression discontinuity designs in economics. Journal of Economic Literature 48(2): 281–355.

Applications of RDD:

- Flammer C. 2015. Does corporate social responsibility lead to superior financial performance? A regression discontinuity approach. *Management Science* 61(11): 2549-2568.
- Flammer C, Bansal. 2017. Does a long-term orientation create value: evidence from a Regression Discontinuity. *Strategic Management Journal* 38(9): 1827-1847.
- Cuñat V, Giné M, Guadalupe M. 2012. The vote is cast: the effect of corporate governance on shareholder value. *Journal of Finance* 67(5): 1943–1977.
- Lalive R. 2007. Unemployment benefits, unemployment duration, and post-unemployment jobs: A regression discontinuity approach. *American Economic Review* 97(2): 108–112.

Thank You!

Contact: cflammer@bu.edu

Research papers: http://sites.bu.edu/cflammer